Non-Exercise-Based Estimation of $\dot{V}O_2_{\text{max}}$

Non-exercise-based equations have been developed by Malek and colleagues (21, 22) to estimate a client’s $\dot{V}O_2_{\text{max}}$ from various demographic and descriptive variables. These equations have been used to provide reasonable estimates of V_O2_{max} for both trained and untrained men and women. In addition, the errors associated with these equations range between ±10% to 15% of V_O2_{max}, which are similar to the errors often encountered with exercise-based estimates of V_O2_{max} (21, 22). Overall, non-exercise-based equations for the prediction of V_O2_{max} can be very useful, especially when the risk of conducting an exercise-based V_O2_{max} assessment is too high or unknown for clients who may be susceptible to exercise-induced stress.

Equipment

- Standard platform scale with anthropometer arm or flat, ridged, right-angled device (to simultaneously slide against a wall and rest on top of client’s crown)
- Calibrated and certified scale
- Rating of perceived exertion scale

Procedure

1. Record the client’s height in centimeters, body weight in kilograms, and age in years.
2. Estimate the typical intensity of training using the Borg RPE scale (e.g., 6-20).
3. Indicate the number of hours per week your client exercises.
4. Indicate the number of years your client has been training consistently with no more than one month without exercise.
5. Determine the natural log of the years of training. That is, enter the client’s years of training and then hit “LN,” or the natural log, on a handheld calculator.
6. Determine V_O2_{max} in L/min using the following equations.
7. Calculate V_O2_{max} in ml \cdot kg$^{-1}$$ \cdot$ min$^{-1}$ using equation 11.7.

Equations

<table>
<thead>
<tr>
<th>Population</th>
<th>Equation for predicting $\dot{V}O_2_{\text{max}}$ (L/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Untrained males</td>
<td>$(0.046 \times H) - (0.021 \times A) - 4.31 $</td>
</tr>
<tr>
<td>Untrained females</td>
<td>$(0.046 \times H) - (0.021 \times A) - 4.93 $</td>
</tr>
<tr>
<td>Aerobically trained males*</td>
<td>$(27.387 \times BW) + (26.634 \times H) - (27.572 \times A) + (26.161 \times D) + (114.904 \times I) + (506.752 \times Y) - 4609.791$</td>
</tr>
<tr>
<td>Aerobically trained females*</td>
<td>$(18.528 \times BW) + (11.993 \times H) - (17.197 \times A) + (23.522 \times D) + (62.118 \times I) + (278.262 \times Y) - 1375.878$</td>
</tr>
</tbody>
</table>

H = height in cm; A = age in years; BW = body weight in kg; D = duration of training in hours per week; I = intensity of training using the Borg scale; Y = natural log of years training.

Aerobically trained is defined as having participated in continuous aerobic exercise for a minimum of 1 hour per workout session, three or more sessions per week, for at least the last 18 months (21, 22)