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3-D coordinates from 2-D camera coordinates, called the direct linear transformation (DLT) method 
(Abdel-Azis and Karara 1971), assumes a linear relationship between the 2-D camera coordinates of a 
marker and the 3-D laboratory coordinates of the same marker. The DLT method is described in more 
detail in papers Marzan and Karrara (1975) and is not elaborated here.

Coordinate Systems and Assumption  
of Rigid Segments
In this chapter, we define a number of Cartesian coordinate systems required for a 3-D analysis. These 
are referred to as a global or laboratory coordinate system (GCS), a segment or local coordinate system 
(LCS), and a force platform coordinate system (FCS).

For this chapter, a biomechanical model is a collection of rigid segments. A segment’s interaction 
with other segments is described by joint constraints permitting zero to six degrees of freedom, and 
subject-specific scaling is defined using palpable anatomical landmarks.

These rigid segments represent skeletal structures, which are not always represented ideally as rigid 
segments. For example, some segments, like the foot or the torso, often have one segment representing 
several bones. It is incorrect to assume that skeletal structures are rigid, but it makes the mathematics 
more palatable. The assumption of rigidity also aids the establishment of an LCS.

Global or Laboratory Coordinate System
The GCS refers to the capture volume in which we represent the 3-D space of the motion-capture 
system (also referred to as the inertial reference system). Recorded data are resolved into this fixed 
coordinate system. In this chapter, the GCS is designated using uppercase letters with the arbitrary 
designation of XYZ. The Y-axis is nominally directed anteriorly, the Z-axis is directly superiorly, and 
the X-axis is perpendicular to the other two axes. Because the subject may move anywhere in the data 
collection volume, only the vertical direction needs to be defined carefully, and that is only so we 
have a convenient representation of the gravity vector. The unit vectors for the GCS are î , ĵ, k̂  (see 
figure 2.2). In this chapter, and in the biomechanics literature, the GCS is a right-handed orthogonal 
system with an origin that is fixed in the laboratory. Note that a coordinate system is right-handed 
if and only if

	 k̂ = î ¥ ĵ and î • ĵ = 0 	 (2.1)
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▲▲Figure 2.1  Typical multicamera setup for a 3-D kinematic analysis.
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Segment or Local 
Coordinate System
A mathematically convenient consequence of the 
assumption of rigidity is that in the context of kine-
matics, each segment is defined completely by an 
LCS fixed in the segment; as the segment moves, 
the LCS moves correspondingly. Like the GCS, the 
LCS is right-handed and orthogonal. In this chapter, 
the LCS is designated in lowercase letters x, y, z 
and unit vectors ′̂i ,   ˆ′j , and ˆ′k , respectively. In this 
chapter, the LCS is oriented such that the y-axis 
points anteriorly, the z-axis points axially (typically 
vertically), and the x-axis is perpendicular to the 
plane of the other two axes with its direction defined 
by the right-hand rule. Thus, on the right side the 
x-axis is directed from medial to lateral, whereas on 
the left side it is directed from lateral to medial. The 
orientation of the LCS with respect to the GCS defines the orientation of the body or segment in the 
GCS, and it changes as the body or segment moves through the 3-D space (see figure 2.2).

Transformations Between Coordinate 
Systems
We have identified two types of coordinate systems (GCS and LCS) that exist in the same 3-D motion-
capture volume. The descriptions of a rigid segment moving in space in different coordinate systems 
can be related by means of a transformation between the coordinate systems (see figure 2.3). A trans-
formation allows one to convert coordinates expressed in one coordinate system to those expressed in 
another coordinate system. In other words, we can look at the same location in different ways based 
on which coordinate system we are using. At first 
glance this may seem redundant because we have not 
added new information by describing the same point 
in different ways. It is, however, convenient because 
objects move in the GCS but attributes of a segment, 
such as an anatomical landmark (e.g., segment end-
point), are constant in the LCS. We generally refer to 
transformations as linear or rotational.

Linear Transformation
In figure 2.4, a point is described by the vector 


P '  in 

the LCS and by 

P  in the GCS. The linear transfor-

mation between the LCS and the GCS can be defined 
by a vector 


O , which specifies the origin of the LCS 

relative to the GCS. The components of 

O  can be 

written as a column matrix in the form

	


O =  

Ox

Oy

Oz

⎡
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(2.2)
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▲▲Figure 2.3  The global coordinate system and 
the local coordinate systems of the right-side lower 
extremity.
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▲▲Figure 2.2  The global or fixed coordinate 
system, XYZ, with unit vectors, ′̂i ,   ˆ′j , and ˆ′k  and 
the local or moving coordinate system, xyz, and its 
unit vectors, ′̂i ,   ˆ′j , and ˆ′k .
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If we assume no rotation of the LCS relative to the GCS, converting 
the coordinates of a point 


P '  in LCS to 


P  in GCS can be expressed as

	

P = 

P ' +

O 	 (2.3)

	

or
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(2.4)

Conversely, conversion of the coordinates of a point 

P  in GCS to 


P '  

in LCS is expressed as

	

P ' = 


P –

O 	 (2.5)

Rotational Transformation
If we assume no translation of the LCS relative to the GCS, converting 
the coordinates of a point 


P  in GCS to 


P '  in LCS can be expressed as

	 P '


= R

P 	 (2.6)

where R is a matrix made up of orthogonal unit vectors (orthonormal 
matrix) that rotates the GCS about its origin, bringing it into alignment 
with the LCS. Conversely, converting the coordinates of a point in the 
LCS to a point in the GCS can be accomplished by

	 P

= R'P '


	 (2.7)

where R' is the inverse (and the transpose) of R. In this chapter we con-
sistently use R as the transformation from GCS to LCS and R' as the transformation from LCS to GCS.

Consider the LCS unit vectors ¢̂i , ¢ĵ , ¢k̂ expressed in the GCS. The rotation matrix from GCS to 
LCS is as follows:

	

R =  

îx
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(2.8)

If we consider translation and rotation of the LCS relative to the GCS, converting the coordinates of a 
point 


P  in GCS to 


P '  in LCS can be expressed as

	

P ' = R(


P −

O) 	 (2.9)

Conversely, converting the coordinates of a point 

P '  in the LCS to point 


P  in GCS can be accom-

plished by

	

P = R'


P ' +  


O 	 (2.10)

Defining the Segment LCS for the Lower 
Extremity
In this chapter we use three noncollinear points to define a segment’s LCS. Noncollinear means that 
the points are not aligned or in a straight line. The method presented is consistent with most models 
presented in the biomechanics literature. In this chapter, the LCS is described for the right-side segments 
of a lower-extremity model consisting of a pelvis, thigh, shank, and foot segments (the left side uses 
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fined by vector 


P  in XYZ, whereas 

the same point is defined by vector 
P '  in x'y'z'. The linear transforma-
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a similar derivation). The LCS of each segment is created based on a standing calibration trial and on 
palpable anatomical landmarks (see table 2.1). It is important to note that both the tracking and calibration 
markers are captured at the same time. However, in figure 2.5, only the calibration markers are shown.
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▲▲Figure 2.5  Right-side marker configuration of the calibration markers used in this chapter to 
compute the local coordinate system of each segment: (a) sagittal plane; (b) frontal plane. The 


PLPSIS  

and 

PLASIS  are not seen in part a but are necessary for calibration. The 


PRPSIS ,


PLPSIS, and 


PRTOE  are not 

seen in part b but are necessary for calibration. Note that the tracking markers on the thigh, shank, 
and foot are necessary in the calibration trial to associate these with the LCS of each segment.


PLPSIS


PRPSIS

Table 2.1  Abbreviations for Calibration Markers

Right Description Left Description

Right anterior-superior iliac spine Left anterior-superior iliac spine

Right posterior-superior iliac spine Left posterior-superior iliac spine

Right lateral femoral epicondyle Left lateral femoral epicondyle

Right medial femoral epicondyle Left medial femoral epicondyle

Right lateral malleolus Left lateral malleolus

Right fifth metatarsal head Left fifth metatarsal head

Right first metatarsal head Left first metatarsal head

Right heel Left heel

Right toe Left toe


PRASIS


PRHEEL


PRLK


PRTOE


PLASIS


PRLA


PRMK


PRMT 1


PRMT5


PLHEEL


PLLA


PLLK
PLMK


PLMT 1


PLMT5


PLTOE
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Pelvis Segment LCS
Markers are placed on the following palpable bony 
landmarks: right and left anterior-superior iliac spine  
(

PRASIS ,


PLASIS ) and right and left posterior-superior iliac 

spine (

PRPSIS ,


PLPSIS ) (figure 2.6). The origin of the LCS is 

midway between 

PRASIS  and 


PLASIS  and can be calculated 

as follows:

	

OPELVIS = 0.5*(


PRASIS + 


PLASIS ) 	 (2.11)

To create the x-component (or lateral direction) of the 
pelvis, a unit vector î '  is defined by subtracting 


OPELVIS  

from 

PRASIS  and dividing by the norm of the vector:

	 î ' = 

PRASIS  − 


OPELVIS

PRASIS  − 

OPELVIS

	 (2.12)

Next we create a unit vector from the midpoint of 

PRPSIS  

and 

PLPSIS  to 


OPELVIS :

	 v̂ = 

OPELVIS  − 0.5*(


PRPSIS + 


PLPSIS )

OPELVIS  − 0.5*(

PRPSIS + 


PLPSIS )

	 (2.13)

A unit vector normal to the plane (in the superior direc-
tion) containing î ' and v̂  is computed from a cross 
product:

	 k̂ ' = î '  × v̂ 	 (2.14)
Note that the order in which the vectors î ' and v̂  are crossed to produce a superiorly directed unit 
vector is determined by the right-hand rule. At this point we have defined the lateral direction and the 
superior direction. The anterior unit is created from the cross product

	 ĵ ' =  k̂ '  × î ' 	 (2.15)
The rotation matrix describing the orientation of the pelvis, which will be used in later calculations, is 
constructed from the unit vectors as

	
RPELVIS =  

îx
' îy

' îz
'

ĵx
' ĵy

' ĵz
'

k̂x
' k̂y

' k̂z
'

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

	
(2.16)

Thigh Segment LCS
The thigh is defined by one virtual location and two marker locations (figure 2.7). The proximal end 
(and origin) of the thigh is coincident with the location of a virtual hip joint center. A number of stud-
ies have described regression equations for estimating the location of the hip joint center in the pelvis 
LCS (Andriacchi et al. 1980; Bell et al. 1990; Davis et al. 1991; Kirkwood et al. 1999). In this chapter 
we use equations derived from Bell and colleagues (1989) to compute a landmark that represents the 
hip joint center 


PRHIP  in the pelvis LCS:

	


PRHIP
' =  

 0.36* 

PRASIS −  


PLASIS

−0.19* 

PRASIS −  


PLASIS

−0.30* 

PRASIS −  


PLASIS

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥ 	

(2.17)
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▲▲Figure 2.6  The origin of the pelvis LCS  
(

OPELVIS ) is midway between the right and left 

anterior-superior iliac spines. The right and left 
anterior-superior iliac spines (


PRASIS  and 


PLASIS )  

and the posterior-superior iliac spines (

PRPSIS  

and 

PLPSIS ) can be used to derive the pelvis LCS.
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We can transform the location of the hip joint from the pelvis 
LCS to the GCS as follows:

	

ORTHIGH =  


PRHIP =  R'PELVIS* 


PRHIP
' +  


OPELVIS 	 (2.18)

To develop the thigh LCS, a superior unit vector is created along 
an axis passing from the distal end (midpoint between the femoral 
epicondyles 


PRLK  and 


PRMK ) to the origin (


ORTHIGH ) as follows:

	
k̂ ' =  


ORTHIGH − 0.5*(


PRLK + 


PRMK )

ORTHIGH − 0.5*(

PRLK + 


PRMK ) 	

(2.19)

We then create a unit vector passing from the medial to the lateral 
femoral epicondyle:

	
v̂ =   (P


RLK − 

PRMK )

PRLK − 

PRMK 	

(2.20)

The anterior unit vector is determined from the cross product of 
the k̂ '  and v̂  vectors as follows:

	 ĵ ' =  k̂ '  × v̂ 	 (2.21)

Care should be taken in the placement of the knee markers. The 
lateral marker is placed at the most lateral aspect of the femoral 
epicondyle. The medial marker should be located so that the 
lateral and medial knee markers and the hip joint define the 
frontal plane of the thigh.

Last, the unit vector in the lateral direction is formed from 
the cross product:

	 ĵ ' =  k̂ '  × v̂ 	 (2.22)

The rotation matrix describing the orientation of the thigh is 
constructed from the thigh unit vectors as

	
RRTHIGH =  

îx
' îy

' îz
'

ĵx
' ĵy

' ĵz
'

k̂x
' k̂y

' k̂z
'

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

	
(2.23)

Because the LCS is orthogonal and k̂ '  is defined explicitly to 
pass between the segment endpoints, the lateral unit vector î ',  
which is perpendicular to k̂ ' , is not necessarily parallel to an 
axis passing between the epicondyles. In other words, the place-
ment of the medial and lateral knee markers does not define the 
flexion-extension axis.

Shank Segment LCS
For the shank or leg segment, the LCS is defined from four pal-
pable landmarks: the lateral and medial malleoli 


PRLA  and


PRMA  

and the lateral and medial femoral epicondyles, 

PRLK  and


PRMK  

(figure 2.8). The origin of the LCS is at the midpoint between 
the femoral epicondyles and can be calculated as

	

ORSHANK = 0.5* (


PRLK + 


PRMK ) 	 (2.24)
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▲▲Figure 2.7  The origin of the thigh 
LCS (


ORTHIGH ) is at the hip joint center. 

The position of hip joint center (

PRHIP ) 

and the lateral and medial femoral epi-
condyles (


PRLK  and 


PRMK ) can be used 

to calculate the thigh LCS.
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▲▲Figure 2.8  The origin of the shank 
LCS (


ORSHANK ) is located at the mid-

point of the lateral and medial epicon-
dyles (


PRLK  and


PRMK ). The positions 

of the lateral and medial epicondyles  
(

PRLK  and


PRMK ) and the midpoint of the 

lateral and medial malleoli (

PRLA  and


PRMA )  

can be used to derive the local coordinate 
system of a proximal biased shank.


